Abstract
With the outstanding biocompatibility of hydroxyapatite (HA) and biodegradation of poly(D,L)lactide(PDLLA), and the expected good bio-mechanical compatibility, nano-HA / PDLLA (n-HA/PDLLA)composite has been paid great interests in hard tissue repair. One of the key factors affecting the potential of the composite is the degradation of the composite. That is what the mechanism of degradation in the composite is and if the degradation of the materials would induce the crack of the composite or a porous structure facile for tissue ingrowth would be formed. In this study, an n-HA/ PDLLA composite containing about 40% n-HA (wt%) was prepared and the degradation of the composite in bony tissue of rabbits and tissue response were studied by implanting composite rods and control HA rods into the femora of 16 New Zealand rabbits. After definite intervals, the histological analysis was completed by light microscopy and the degradation behavior was observed by scanning electron microscopy. The results suggested that a nano-HA/PDLLA composite was obtained and the materials showed good biocompatibility and osteoconductivity. The substantial degradation of the composite occurred at 8 weeks in vivo. After a longer period of implantation, the further degradation of the composite led to the formation of interconnected microporous and macroporous structure in the materials that might facilitate the tissue ingrowth in the composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.