Abstract

Nanostructured ceramic materials doped with stabilizers have superior mechanical, chemical, and electrical properties. In this study, tetragonal zirconia stabilized by 6 mol% MgO and 2 mol% Y2O3 (t-6MgO–2Y2O3–ZrO2) nanopowders with quasi-spherical morphology, uniform particle size, and narrower grain size distributions were prepared by a combination process including two steps: namely co-precipitation and high-energy ball milling. The effect of ball milling time on ZrO2 crystal particles was investigated by characterizations including XRD, Raman, FT-IR, FEESM, BET, and TEM. With the increase of ball milling time, the average grain size of the powder showed a gradual decrease tendency, the particle size distribution changed from wide to narrow, the particle morphology tended to be spherical, and the specific surface area gradually increased. Under the optimized conditions (ball milling for 8 h, calcination temperature of 800 °C, and holding time of 2 h), the highly dispersed spherical nanopowders with a minimum particle size of 18.47 nm and an average particle size of 29.02 nm were obtained. These zirconium oxide nanopowders are suitable for the preparation of inorganic coatings, biomedical materials, catalyst materials, and other types of functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.