Abstract

Reaction thermal runaway accidents occur frequently and occupy a high proportion in chemical accidents. Reducing accidents by controlling reaction temperature is of great implication to enhance the safety level of chemical processes. Phase change materials (PCMs) have a good energy storage potential, which can rapidly convert the reaction exotherm in the reaction process into its own phase change latent heat, urgently control the reaction temperature, and enhance the process thermal safety level. In this study, using n-octadecane as the core and melamine-formaldehyde (MF) resin as the shell, microencapsulated phase change materials (microPCMs) was made, which has a smooth spherical shape, good thermal stability, and a phase change enthalpy up to 162.87 J/g. The homogeneous esterification reaction of 2-butanol (2 B) and propionic anhydride (PA) was selected as the target reaction, and then the reaction was scaled up equivalently to investigate the effect of amplification to the reaction system. The results indicated that the temperature control of the esterification reaction system by microPCMs is the synergy between physical inhibition and chemical inhibition. The reaction temperature could be controlled by adding microPCMs, and the temperature control effect improved with the increase of microPCMs addition. In large scale reactors, microPCMs still has certain temperature control ability after being added.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call