Abstract

We have constructed a superhydrophobic surface with lanthanum palmitate on carbon steel via a facile one-step electrodeposition. The morphology and chemical composition of the superhydrophobic surface were characterized by field-emission scanning electron microscopy with attached energy dispersive X-ray spectrum, Fourier transform infrared spectra and X-ray photoelectron spectroscopy, respectively. The as-prepared surface with hierarchical structure has a largest contact angle of 160° ± 0.5° and a lowest sliding angle of 2° ± 0.5°. We found that both high electrodeposition potential and high concentrations lanthanum nitrate can accelerate the formation of superhydrophobic film. The electrochemical measurements demonstrated that the superhydrophobic surface exhibited excellent anti-corrosion performance in 3.5 wt% NaCl solution. Moreover, we also investigated the chemical stability, self-cleaning and oil/water separation of the superhydrophobic film. We believe that the facile fabrication method provides a promising strategy to fabricate multi-functional superhydrophobic surface with lanthanide series rare-earth elements on kinds of substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.