Abstract

ABSTRACTThe compositional flexibility of the sodium zirconium phosphate (NaZr2(PO4)3) structure has been exploited in the design of monophasic radiophases capable of immobilizing the most common cations associated with reprocessed high-level commercial waste streams. Highly crystalline, monophasic members of the NaZr2(PO4)3 structural family ([NZP]) have been prepared with conventional processing methods and equipment. These radiophases were tailored to accommodate 10–20 wt % modified PW-4b simulated calcine as single phases isostructural with NaZr2(PO4)3. To meet the challenge of designing monophasic materials capable of accommodating the chemical complexity of PW-4b, an ionic substitution scheme based on crystal chemical principles was developed. The radiophases were prepared with inexpensive, inorganic precursors and a solution sol-gel method; these materials were heat treated and/or sintered under a variety of conditions to determine the optimum conditions for single phase [NZP] formation. X-ray powder diffraction provided valuable information that was used to assess the suitability of the ionic substitution model developed in this investigation. The results of this investigation suggest that monophasic [NZP] radiophases capable of accommodating 10–20 wt % modified PW-4b simulated calcine may be continuously processed with conventional ceramic processing methods and equipment. Moreover, the relatively low temperatures involved and the reproducibility of the process make [NZP] radiophases economically attractive hosts for radioactive and heavy metal industrial wastes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.