Abstract

New microscale zero-valent iron adsorbent on fly ash and bentonite matrix for removal of crystal violet (CV) and methylene blue (MB) was synthesized through direct reduction of iron oxide using coke and palm kernel shell. The adsorbent was prepared as cylindrical shaped pellets to remove the CV and MB from the aqueous solution. Nitrogen adsorption-desorption isotherm and scanning electron microscopy (SEM) studies showed that the adsorbent is highly porous, and the iron particles are finely dispersed on the supporting material surfaces. FTIR and UV studies indicated that the C=C bonds in CV and C=N+(CH3)2 bonds in MB were affected in the adsorption process. MB switched to the reduced MBH2 species while CV was reduced to two small-size molecular compounds, explaining the higher CV adsorption in comparison to that of MB. The reduction of these compounds was coupled to the oxidation of Fe0 to Fe2O3 as revealed by XRD characterization of the adsorbent after adsorption. CV and MB adsorption isotherms fitted well with the Langmuir adsorption model. Different adsorption and reduction kinetic models were examined for the MB and CV removal processes. A better fit of the experimental data with the pseudo-second-order model was observed. CV and MB adsorption increased with temperature in the 30-50°C range. At 50°C, adsorption capacities of CV and MB reached to 89.9 and 42.8mg/g, respectively. This new adsorbent showed a superior adsorption capacity for CV and MB when compared to other adsorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.