Abstract

Thermoplastic polyurethane possesses many special characteristics. Its flexibility, rigidity, and elasticity can be adjusted by controlling the ratio of soft segments to hard segments. Due to its versatile physical properties, thermoplastic polyurethane is commonly used in transportation, construction, and biomaterials. However, methods for thermoplastic polyurethane foam production using CO2 are still under investigation. We have previously prepared nanoporous thermoplastic polyurethane foam using commercially available thermoplastic polyurethane; however, in this study, thermoplastic polyurethane was synthesized using 4,4′-methylenebis(phenyl isocyanate), poly(propylene glycol) and 1,4-butanediol, without solvents, using a pre-polymer method. The properties of the synthesized thermoplastic polyurethane were characterized by Fourier transform infrared spectroscopy, thermal analysis, and their mechanical properties were measured. The synthesized thermoplastic polyurethane was foamed by batch foaming using supercritical CO2 as the blowing agent. The effect of saturation temperature and saturation time on the cell morphology of the thermoplastic polyurethane foam was examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call