Abstract
Microstructure and texture controlled 48Fe-52Co at% alloy was prepared by repeated cold-rolling and recrystallization through heat treatment at temperatures below order-disorder phase transformation using Fe and Co foils. Furthermore, distortion of controlled texture orientated cubic crystal structured 48Fe-52Co at% alloy along the 〈0 0 1〉 direction was attempted by introducing nitrogen interstitially through plasma nitriding. The textural analysis suggested that the microstructure is composed of micron-sized grains randomly aligned along rolling direction (RD). Furthermore, from the results of orientation distribution function (ODF), the dominance γ-fiber was confirmed in as-rolled samples. However, in recrystallized sample, the intensity of rotated-cube orientation increased while the presence of γ-fiber decreased. Furthermore, a complete rotated-cube orientation was realized in nitrided texture. The appearance of the prominent X-ray diffraction peak (2 0 0) in all samples indicated the presence of rotated-cube orientation. However, the FWHM of (2 0 0) peak of the nitrided sample was broader than the rest. This was attributed to the diffusion of nitrogen into the matrix during plasma nitriding and internal nitriding was confirmed from the EDX analysis. However, further investigation is necessary to understand the behavior of nitrogen.Magnetic properties of as-rolled 48Fe-52Co at% alloy inferred from in-plane magnetic hysteresis loops was similar Fe foil. Furthermore, magnetic properties of recrystallized and nitrided 48Fe-52Co at% alloy were different from Fe-Co particles or crushed bulk Fe-Co alloy prepared by arc melting. However, the internal diffusion of nitrogen was not adequate enough to bring about a considerable change in the magnetic properties. We believe that considerable crystal distortion to induce change in the magnetic properties can be exerted by introducing interstitial carbon and the addition of third or fourth elements.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.