Abstract

Plasma nitriding of tool materials is common practice to improve the wear resistance and lifetime of tools. Machining-induced compressive residual stresses in shallow layers of some tenths of microns are observed accompanied by other characteristic properties of machined surfaces in these high-strength materials. After plasma nitriding of M2 high-speed steel, previously induced compressive residual stresses remain stable and the depth of diffusion layers decreases with increasing compressive residual stresses. This article reports investigations of plasma nitrided samples with different levels of residual stresses induced prior to the nitriding process. For comparison, experiments with bending load stresses during plasma nitriding have also been carried out. The plasma nitriding treatment was performed at constant temperature of 500 °C with a gas mixture of 5 vol pct N2 in hydrogen. Nitriding time was varied from 30 to 120 minutes. All samples were characterized before and after plasma nitriding concerning microstructure, roughness, microhardness, chemical composition, and residual stress states. Experimental results are compared with analytical calculations on (residual) stress effects in diffusion and show a clear effect of residual and load stresses in the diffusion of nitrogen in a high-strength M2 tool steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.