Abstract

We presents an innovative approach to addressing the mechanical properties limitations of fluororubber (FKM) in the industrial field. A novel functionalized nano-silica spheres (SiO2), grafted with amino groups, were constructed by utilizing chemical grafting. The surface modification of the nanosilica microspheres enables the formation of C=N bonds between the amino-functionalized nanosilica microspheres and FKM promoting high dispersion and strong interfacial bonding of SiO2, resulting in an exceptional mechanical enhancement function for FKM composite. Compared to original FKM, the FKM/SM-A-10 composite demonstrates remarkable improvements in both tensile strength and hardness by 242% and 49%, respectively. Additionally, there is a notable 40% enhancement in thermal conductivity of the FKM/SM-A-10 composite. This straightforward and efficient manufacturing approach for achieving high-performance FKM proves to be a valuable and practical foundation for industrial design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.