Abstract

Transparency is an important property for polymer flame retardants, especially epoxy resin (EP) flame retardants, and flame-retardant epoxy resins that maintain a high transparency and low chromatic aberration play important roles in the optical, lighting, and energy industries. Herein, a DOPO-based flame retardant 6,6'-((sulfonylbis(4,1-phenylene))bis(oxy))bis(dibenzo[c,e][1,2]oxaphosphinine 6-oxide) with a high transparency and low chromatic aberration was prepared via the classical Atherton-Todd reaction and named SBPDOPO. Its chemical structure was characterized with Fourier IR spectroscopy and NMR spectroscopy. An EP loaded with 7 wt% SBPDOPO passed the UL-94 V-0 rating with an LOI value of 32.1%, and the peak heat release rate, total heat release, and total smoke production were reduced by 34.1%, 31.6%, and 27.7%, respectively, compared with those of pure EP. In addition, the addition of SBPDOPO improved the thermal stability, residual mass, and glass transition temperature of the EP. On this basis, the EP containing 7 wt% SBPDOPO maintained a high transparency and low color aberration, with a transmittance of 94% relative to that of pure EP and a color aberration ΔE of 1.63. Finally, the flame-retardant mechanism of SBPDOPO was analyzed, which demonstrated that it exerted both gas-phase and condensed-phase flame-retardant effects, and that SBPDOPO/EP had high potential for application scenarios in which both flame retardancy and transparency are needed. SBPDOPO/EP has great potential for applications requiring both flame retardancy and transparency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call