Abstract

In this study, high-purity and ultrafine WC-6%Co composite crystallites was synthesized by a simple two-step process consisting of the precursor-formation of the mixture of blue tungsten oxide (WO2.9) and cobaltic oxide (Co2O3) and the following deep reduction and carburization with CH4-H2 mixed gases. The experimental results revealed that after the first carbothermic reduction stage at 1050 or 1150 °C, a mixture of W, WO2 and Co7W6 was obtained, which was further carburized to the WC and Co phases by CH4-H2 mixed gases at 900 °C. With the increase of C/WO2.9 molar ratio, the particle sizes of first-stage precursor and carbonized product were both decreased. The particle sizes of final products are mainly determined by C/WO2.9 ratio and reaction temperature at the first stage. When the C/WO2.9 ratio was in the range of 2.3–2.7, the high-purity WC-6%Co composite powder with the average particle sizes of 160–410 nm could be obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call