Abstract

The potential for recycling graphitic carbon from lithium-ion battery (LIB) anodes has been overlooked due to its relatively low economic value in applications. This study proposed to use graphene nanoplates (GNPs), which were obtained from spent lithium battery anode graphite, treated with ball-milling method, for hydrothermal synthesis of MnO2-supported graphene nanoplates (MnO2/GNPs) composites materials. The composites exhibited excellent electrochemical characterization curves, indicating ideal capacitance characteristics. The analysis of MG24-20 material showed the good impact resistance and capacity retention around 100% with capacitance of 124.6F/g at 10 mV/s, surpassed similar samples using precious metals and high-end materials, enabling the reuse of spent graphite in energy conversion and storage system for effective utility.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call