Abstract

Nanocomposite hydrogels based on tyramine conjugated gum tragacanth, poly (vinyl alcohol) (PVA), and halloysite nanotubes (HNTs) were prepared by electron beam irradiation and characterized. The FTIR, 1H NMR, and TGA results confirmed the chemical incorporation of HNTs into gum tragacanth. Gel content and swelling of hydrogels decreased with HNTs loading up to 20 % wt. The mechanical strength of hydrogels increased by increasing HNTs content up to 10 % with 371 kPa fracture stress at 0.95 fracture strain, compared to 312 kPa stress at 0.79 strain for gum tragacanth/PVA hydrogel. Hydrogel's biocompatibility and osteogenic activity were tested by seeding rabbit bone marrow mesenchymal stem cells. The cell viability was >85 % after 7 days of culture. In vitro secretion of ALP and calcium deposition on hydrogels in alizarin red assay after 21 days of culture indicated hydrogel potential for bone tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call