Abstract

Electronic-grade isopropyl alcohol is widely utilized in the cleaning of semiconductors and microelectronic components. Removing ions like Pb2+ is crucial since the presence of impurities may cause degradation of electronics, increased failure rates, and short circuits. Membrane materials offer a number of advantages in the field of adsorption separation; however, the lack of adsorption sites results in limited adsorption capacity. In the current work, guanidino-grafted NH2-MIL-101(Fe) was incorporated into polyvinylidene fluoride (PVDF) to prepare MOF/PVDF mixed matrix membranes (NM/PVDF) for the removal of Pb2+ from isopropanol. Benefiting from the larger specific surface area and more lone electron pairs in the guanidine group, the Pb2+ adsorption capacity of the as-prepared NM/PVDF membrane was 29.4458 mg/g, which was higher than that of the NH2-MIL-101(Fe)/PVDF membrane (20.9306 mg/g) and the pure PVDF membrane (6.7324 mg/g). The NM/PVDF membrane was able to reduce the concentration of Pb2+ from 500 to 86.73 ppb. This work highlights the potential of guanidine-grafted Fe-based MOFs/PVDF membranes as adsorbents for acquisition of electronic-grade solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.