Abstract

In this study, heparin-like polysaccharides were successfully produced by sulfation of carboxymethylcellulose sodium, then a fully biobased bilayer composed of sulfated carboxymethylcellulose sodium (SCMC) and chitosan (CS) was composited on the surface of Poly (L-lactic acid) (PLA) through layer-by-layer (LBL) assembly for the potential blood-contact application such as bioresorbable vascular scaffold. The preliminary structure and bioactivity of SCMC with different degree of sulfation were investigated, and the SCMC with best performance was selected. The surface chemical compositions, morphologies and wettability of SCMC/CS multilayer-modified PLA films were researched by X-ray photoelectron spectrometer, scanning electron microscopy and water contact angle meter. A series of anticoagulation tests of SCMC/CS multilayer-modified PLA films were performed. In term of (SCMC/CS)15 multilayer-modified PLA film, the protein adsorption and plate adhesion decreased by 44.6 % and 71.5 %, respectively, the activated partial thromboplastin time prolonged by 11.9 times and thrombin time exceed 300 s, the contact activation and hemolysis rate significantly reduced compared with unmodified PLA film. Besides, this modified PLA films performed good cytocompatibility to L929 fibroblast cells, excellent anti-inflammatory and antibacterial abilities. In conclusion, the multifunctional SCMC/CS multilayer-modified PLA films with hemocompatibility, cytocompatibility, anti-inflammatory and antibacterial properties may have promising potential in future clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call