Abstract
Hydrogels are extensively utilized in the fields of electronic skin, environmental monitoring, biological dressings due to their excellent flexibility and conductivity. However, traditional hydrogel materials possess drawbacks such as environmental toxicity, low strength, poor stability, and water loss deactivation, which limited its frequent applications. Here, a flexible conductive hydrogel called wood-based DES hydrogel (WDH) with high strength, high adhesion, high stability, and high sensitivity was successfully synthesized by using environmentally friendly lignocellulose as skeleton and deep eutectic solvent as matrix. The strength of WDH prepared from lignocellulose framework is approximately 50 times higher than poly deep eutectic solvent hydrogel, and about 4.5 times higher than that prepared from cellulose skeleton. The WDH exhibits stable adhesion to most common materials and demonstrates exceptional dimensional stability. Its conductivity remains unaffected by water, even after prolonged exposure to air, maintaining a value of 0.0245 S/m. The anisotropy inherent in the system results in three distinct linear sensing intervals for WDH, exhibiting a maximum sensitivity of 5.45. This paper verified the advantages of lignocellulose framework in improving the strength and stability of hydrogels, which provided a new strategy for the development of sensor materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.