Abstract

Bulk copolymerization of alkyl acrylates and cyclodextrin (CD) host monomers produced a single movable cross-network (SC). The CD units acted as movable crosslinking points in the obtained SC elastomer. Introducing movable crosslinks into a poly(ethyl acrylate/butyl acrylate) copolymer resulted in good toughness (Gf) and stress dispersion. Here, to improve the Young’s modulus (E) and Gf of movable cross-network elastomers, the bulk copolymerization of liquid alkyl acrylate monomer swelling in SC gave another type of movable cross-network elastomer with penetrating polymers (SCPs). Moreover, the bulk copolymerization of alkyl acrylate and the CD monomer in the presence of SC resulted in dual cross-network (DC) elastomers. The Gf of the DC elastomer with a suitable weight % (wt%) of the secondary movable cross-network polymer was higher than those of the SCP or SC elastomers. The combination of suitable hydrophobicity and glass transition of the secondary network was important for improving Gf. Small-angle X-ray scattering (SAXS) indicated that the DC elastomers exhibited heterogeneity at the nanoscale. The DC elastomers showed a significantly broader relaxation time distribution than the SC and SCP elastomers. Thus, the nanoscale heterogeneity and broader relaxation time distribution were important to increase Gf. This method to fabricate SCP and DC elastomers with penetrating polymers would be applicable to improve the Gf of conventional polymeric materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.