Abstract
AbstractMethoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (MPEG‐PCL) or MPEG‐b‐poly(L‐lactide) (MPEG‐PLLA) diblock copolymers were prepared by the polymerization of CL or LA, using MPEG as an initiator in the presence of stannous octoate. MPEG‐b‐poly(ε‐caprolactone‐ran‐L‐lactide) (MPEG‐PCLA) diblock copolymers with different chemical composition of PCL and PLLA were also prepared by adjusting the amount of CL and LA from MPEG in the presence of stannous octoate. In degradation study, the degradation of the MPEG‐PCLA diblock copolymers mainly depends on the PCL and PLLA segments present in their structure. MPEG‐PCLA, with intermediate ratio of PCL and PLLA segment, completely degraded after 14 weeks. Meanwhile, partially degraded MPEG‐PCLA segments and parent MPEG segments were observed at higher PCL or PLLA segment contents. Introduction of PLLA into the PCL segments caused a lowering of the crystallinity of the diblock copolymers, thus, inducing a faster incoming of water into the copolymers. We confirmed that the diblock copolymers, with lower degree of crystallinity, have degraded more rapidly. POLYM. ENG. SCI., 46: 1242–1249, 2006. © 2006 Society of Plastics Engineers
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.