Abstract

In this study, curdlan sulphate - chitosan nanoparticles were prepared through polyelectrolyte complexing at a mass ratio of 2:1 respectively. The curdlan was produced by fermentation with Agrobacterium sp. ATCC 31750, which was then sulphated to form the polyanionic polymer. A first-line tuberculosis drug, Rifampicin and a phytochemical, DdPinitol, were encapsulated into Curdlan Sulphate (CS) - Chitosan Nanoparticles (C) (CSC NPs) of size 205.41 ± 7.24 nm. The drug release kinetics followed a Weibull model with initial burst release (48 % Rifampicin and 27 % d-Pinitol within 6 h), followed by a sustained release. The prepared CSC: d-PIN + RIF NPs was cytocompatible and entered the M.smegmatis infected macrophages through multiple endocytic pathways including clathrin, caveolae and macropinocytosis. They showed superior bactericidal activity (2.4–2.7 fold) within 4 h when compared to free drug Rifampicin (1.6 fold). The drug encapsulated CSC: RIF suppressed the pro-inflammatory gene (TNF-α by 3.66 ± 0.19 fold) and CSC: d-PIN + RIF increased expression of the anti-inflammatory gene (IL-10 by 13.09 ± 0.47 fold). Expression of TGF- β1 gene also increased when treated with CSC: d-PIN + RIF (13.00 ± 0.19 fold) which provided the immunomodulatory activity of the encapsulated CSC NPs. Thus, curdlan sulphate - chitosan polyelectrolyte complex can be a potential nanocarrier matrix for intracellular delivery of multiple drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.