Abstract

In the present study, the inhibition performance of some medicinal plants (i.e. Yarrow, Wormwood, Maurorum, Marjoram, and Ribes rubrum) was theoretically and experimentally investigated for mild steel immersed in 1M HCl. In this way, the obtained extracts characterized by Fourier transform infrared spectroscopy (FT-IR) and the electrochemical and theoretical techniques were used to study the inhibition mechanisms of the extracts for the immersed electrode in the acidic solution. In addition, the microstructure of the electrode surface immersed in the blank and inhibitor-containing solutions characterized by field emission scanning electron microscopy (FE-SEM), and Violet-visible (UV–Vis) spectroscopy was used to confirm the adsorption of the compounds on the electrode surface. The obtained electrochemical results revealed that the inhibition performance of the green inhibitors increased by increasing their dosage in the electrolyte. In addition, it was proved that Marjoram plant extract possessed the most inhibition efficiency (up to 92%) among the under-studied herbal extracts. Marjoram extract behaved as a mixed-type inhibitor in the hydrochloric acid solution, and the adsorption process of the extract on the steel surface followed the Langmuir adsorption model. Adsorption of the compounds on the steel surface was also studied using density functional theory (DFT), and it was found that the protonated organic compounds in the extract have a high affinity for adsorption on the electrode surface in the acidic solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.