Abstract

Monodispersed core-shell porous Fe3O4@C nanospheres are prepared through hydrothermal treatment and subsequent chemical vapor deposition (CVD). Specially, the magnetite reduction and carbon coating are completed via CVD simultaneously and the process is verified by X-ray diffraction, scanning electron microscope and transmission electron microscope. Fe3O4@C composites exhibit high reversible capacity (∼1100mAhg−1 at 100mAg−1 after 60 cycles), excellent cyclic stability and good rate performance. The carbon coating layer serves as a highly conducting framework and provides a flexible space for buffering strain and stress, and the pores facilitate ion transport during electrochemical cycling. More importantly, the core-shell Fe3O4@C composite is connected by carbon to form a three-dimensional network, which contributes to the relief of inner strain and the fast transport of electrons and lithium ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.