Abstract

Caterpillar-like nanoflaky MnO2/carbon nanotube (CNT) nanocomposites are synthesized via a facile solution method. To build a three-dimensional hierarchy architecture, highly porous interconnected MnO2 nanoflakes are uniformly coated on the surface of the CNTs. As a promising anode material for lithium-ion batteries, the nanoflaky MnO2/CNT nanocomposite electrode exhibits a large reversible capacity of 801 mA h g−1 (∼1000 mA h g−1 can be attributed to the MnO2 porous layer alone) for the first cycle without capacity fade for the first 20 cycles and with a good rate capability. The superior electrochemical performance of the MnO2/CNT nanocomposite electrode compared to the pure MnO2 electrode can be attributed to its unique hierarchy architecture, which is able to provide fast lithium ion and electron transport and to accommodate a large volume change during the conversion reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.