Abstract

We investigated the properties of composite board formed using base sheets of aluminum foil-laminated and polyethylene (PE) plastic-laminated liquid packaging paperboard (LP) as an alternative to recycling these items in wastepaper stream. Boards of different specific gravities ranging from 0.55 to 0.75 were made by pressing shredded LP blended with urea resin having resin content of 6%–10% at 180°C. Subsequently, we also prepared mixed particleboard [wood (WD) particles and LP mixed], three-layered particleboard (LP as the middle layer, WD in the upper and lower layers), and wood particleboard all having resin content of 10% and various specific gravities. Static bending and internal bonding strengths and thickness swelling of the specimens were determined to examine their properties. At the same specific gravity, the properties of LP particleboards were affected by their resin content. The modulus of rupture (MOR), modulus of elasticity (MOE), and internal bond strength of the LP particleboards increased with increasing specific gravity of the boards at the same resin content, but thickness swelling of the LP particleboards showed the reverse trend. The average MOR of the LP particleboards approximated that of the mixed particleboards and was greater than those of the three-layered particleboards and wood particleboards. Internal bond strength and thickness swelling of the LP particleboards were smaller than those of the other particleboards. Based on the above observations, we deemed that LP can be made into composite boards with adequate properties either alone or mixed with wood particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call