Abstract

Carboxyl group-donated silver (Ag) nanoparticles for coating on medical devices were prepared by a two-phase reduction system in situ. AgNO3 was the Ag ion source, tetraoctylammonium bromide [N(C8H17)4Br] the phase-transfer agent, sodium tetrahydroborate (NaBH4) the reducing agent and 10-carboxy-1-decanthiol (C11H22O2S, CDT) the capping agent. The characterizations of the Ag nanoparticles were conducted by diffuse reflectance Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric differential thermal analysis (TG/DTA) and transmission electron microscope. With CDT capped on Ag nanoparticles, we found that the band around 3,100cm(-1) was attributed to COO-H stretching vibration, two adsorptions at 2,928 and 2,856cm(-1) to C-H symmetric/anti-symmetric stretching vibration, and at 1,718cm(-1) to C=O stretching vibration in the FT-IR spectra. The organic components of the carboxylated Ag nanoparticles were 5.8-25.9wt%, determined by TG/DTA. The particle sizes of the carboxylated Ag nanoparticles were well controlled by the addition of the capping agent, CDT, into the reaction system. The antimicrobial activity of the Ag nanoparticles covered with different contents of CDT against E. coli was evaluated. Smaller-size Ag nanoparticles showed higher antibacterial activity, which depended on a surface area that attached easily to a microorganism cell membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.