Abstract

Numerous studies have focused on the preparation of carbon fibers (CFs)-based high-efficiency microwave absorbers with reasonable structural design and surface morphology control, which simultaneously meet the required impedance matching and loss ability. Here, CFs@NiS/Ni3S4@MoS2 (CNNM) with core-sheath structure was prepared through several simple hydrothermal reactions. The morphology of the as-prepared CNNM nanocomposite is controlled by the amount of added sodium molybdate dihydrate, which causes the difference in minimum reflection loss (RL) and effective attenuation bandwidth among the samples. For the microwave absorbing performance, the minimum RL is −18 dB and the effective attenuation bandwidth is 8.7 GHz, which appear at the thickness of 2.8 mm and cover most of the X- and Ku-bands. The excellent absorbing performance is attributed to optimized impedance matching and enhanced polarization loss. These results originate from the transition metal sulfides, which not only effectively prevent the skin effect by decreasing the conductivity of CFs but also increase interfaces and flaws, leading to interface polarization and dipole polarization losses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.