Abstract

To improve its aqueous solubility and stability in biological fluid, CPT was physically loaded in polymeric micelles. Polymeric micelles were composed of various poly(ethylene glycol)–poly(aspartate ester) block copolymers (PEG-P(Asp(R))). The incorporation and circulation stability of CPT micelles were evaluated by measuring the CPT in micelle using gel-permeation chromatography and by CPT concentration measurement after intravenous injection using HPLC, respectively, in terms of chemical structure of block copolymers. The stability of CPT-loaded micelles in vivo depended on the amount of benzyl esters, and length of PEG in the polymers to a greater degree than it did in vitro. A stable formulation of CPT-loaded micelles was obtained using PEG-P(Asp) with PEG of 5000 (MW), 27 Asp units, and 57–75% benzyl esterification of Asp residue. This CPT-loaded micelles showed about a 17-fold lower blood clearance value than unstable micelles. The CPT-loaded micelles are potentially delivered to tumor sites owing to an extended circulation in the blood stream.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.