Abstract

Nowadays, the research on the recognition and separation of proteins has attracted extensive attention in the fields of materials science, bioengineering and life science. Protein imprinted polymers are ideal recognition materials, due to its high selectivity, good stability, easy preparation, and low cost. Herein, novel surface imprinting biowaste-derived molecularly imprinted polymers (BD-MIPs) were synthesized for specific recognition and purification of lysozyme (Lyz). This is the first time that magnetic pomegranate rind-derived carbon was used as a carrier to immobilize Lyz. Then, with the self-polymerization of dopamine, a large number of biocompatible recognition sites were generated under mild conditions. The physical/chemical properties and surface morphologies of the synthetic BD-MIPs were characterized, indicating that the imprinted film was successfully synthesized, and the BD-MIPs had good thermal stability and magnetic property. To investigate the recognition performance of BD-MIPs, four adsorption experiments were performed. The results show that BD-MIPs had a high adsorption capacity of 301.87mgg-1, fast equilibrium time within 40min, satisfactory selectivity and good reusability for Lyz. Furthermore, the practicability of BD-MIPs was confirmed by the isolation of Lyz from a biological sample. The good adsorption capacity and gentle one-step preparation make the BD-MIPs attractive for Lyz recognition, which shows potential values in basic biomedical research, industrial protein purification and clinical diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call