Abstract

AbstractCellulose has a wide range of uses. It could be modified to create cellulose‐based hydrophobic materials and cellulose‐based conductive and stable flexible films, but it did not have antibacterial properties and was susceptible to bacterial erosion. In order to improve the utilization of cellulose materials and broaden the application of cellulose materials, cellulose could be given certain antibacterial properties by combining it with antimicrobial agents. This study focused on creating an organic antimicrobial agent, Benzothiocyanine (TCMTB), from CH2ClBr, and then developing a TCMTB‐CMC composite antimicrobial film by combining TCMTB with CMC. The successful synthesis of TCMTB was confirmed through NMR hydrogen spectroscopy testing. By varying the proportions of TCMTB in CMC, three types of composite antimicrobial cellulose film were produced. The study also assessed the impact of TCMTB on the mechanical strength of CMC film and tested the antimicrobial effectiveness of the composite film using the plate counting method. Results showed that the composite film had high inhibition rates, with 96.2% against Escherichia coli and 98.6% against Staphylococcus aureus. To establish a theoretical foundation for its use in seed encapsulation, leather preservation, and other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.