Abstract

A novel process for the high-value-use of iron from bauxite residue was proposed in this work. The process was trying to use the iron-containing stripping solution generated during resource recycling of bauxite residue to produce battery-grade FePO4·2H2O product. Thermodynamics calculation indicates that Fe and P in the stripping solution mainly existed in the form of FeHPO4+, and the theoretical pH for the conversion reaction from FePO4·2H2O to Fe(OH)3 was 1.72. The optimal condition for the synthesis of FePO4·2H2O using the stripping solution was determined as: reaction pH of 0.8, reaction temperature of 90°C, Fe/P ratio of 1, and reaction time of 24h. XRD result showed that the synthesized FePO4·2H2O was well-crystallized and perfectly matched with the characteristic peaks of FePO4·2H2O. Moreover, all the parameters of the synthesized iron phosphate meet the quality requirements of battery precursor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.