Abstract

Oily sewage discharged from ships has brought many harms to the marine environment, even endangered marine life and human life. As a new type of water treatment technology, microbial fuel cell (MFC) can efficiently treat pollutants and recover energy, which can be converted into electric energy. However, its large internal resistance restricts its development. In order to solve the problems of low power generation performance and poor biocompatibility of microbial fuel cell, a gold nanoparticle-carbon quantum dot/polydopamine/graphene oxide/bacterial cellulose (AuNP-CQD/PDA/GO/BC) electrode was prepared, and it was applied to the treatment of oily sewage from ships. Fourier transforms infrared spectroscopy, X-ray diffraction, scanning electron microscopy, gas chromatography-mass spectrometry, and contact angle measuring instrument were used to characterize the electrode. The results show that PDA bridges GO and AuNP-CQD particles through the electrostatic interaction/π-π bond/hydrogen bonding, respectively. This attracts a large number of microorganisms to attach to the surface of the porous anode material, which greatly improves the activity and quantity of microorganisms. Moreover, the maximum power density of AuNP-CQD/PDA/GO/BC electrode is 2624.91 mW/m2, which obviously improves the electrochemical performance of MFC. The oil content of the treated water is ≤ 15mg/L, reaching the discharge of MARPOL 73/78 convention. Therefore, the proposed approach has paved new dimensions in not only the preparation of a new composite electrode materials but also its applications as effective degradation of ship oily sewage in MFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call