Abstract

Hepatocellular carcinoma (HCC), which is one of the three major cancers, has attracted growing attention due to its high mortality, health care cost, and circumscribed therapeutic methods. Hence, the development of a fast, accurate, and flexible method to detect α-fetoprotein (AFP), the specific marker of HCC, is significant for diagnosis and treatment of cancer. Here, we constructed a novel SERS biosensing platform combining the target-responsive DNA hydrogel for the sensitive detection of AFP. The linker strand in DNA hydrogel is an aptamer that can specifically recognize AFP and accurately control the release of immunoglobulin G (IgG) encapsulated in hydrogel. In the presence of AFP, the hydrogels were disentangled and the IgG was released. Thereafter, the released IgG was captured by SERS probes and biofunctional magnetic beads through formation of sandwich-like structures, resulting in the signal of Raman tags decreasing in the supernatant after magnetic separation. Due to the ultrahigh sensitivity of the SERS biosensor, the proposed method has a wide detection linear range (50 pg/mL to 0.5 μg/mL) and a detection limit down to 50 pg/mL. Moreover, the sequence of the linker strand in the DNA hydrogel can be specifically encoded into a new aptamer that responds to other cancer markers. This convenient and inexpensive detection method provides a new strategy for the detection of tumor markers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.