Abstract

Graft copolymerization of acrylamide onto coconut husk (CH), initiated by the ferrous ammonium sulfate/H2O2 redox initiator system, was studied. To determine the optimum conditions of grafting, the effect of the concentrations of ferrous ammonium sulfate, the monomer, and H2O2 and the time and temperature on percentage of the graft yield was studied. A new adsorbent media having a carboxylate functional group was synthesized by the surface modification of polymer-grafted coconut husk (PGCHCOOH). The mechanism of graft polymerization and surface functionalization is proposed. The material exhibits a very high adsorption potential for Hg(II). The sorption of Hg(II) was found to be dependent on the contact time, concentration, pH, and temperature. Maximum removal of 99.4% with 2 g/L of the sorbent was observed at 125 μmol L−1 Hg(II) concentration at pH 6.0. The slow step which determines the rate of exchange of Hg(II) ions is diffusion through the adsorbent particles. The diffusion coefficients, energy of activation, and entropy of activation were calculated and used to determine the theoretical behavior of the sorption process. The applicability of the Langmuir isotherm established the endothermic character of the adsorption. Acid regeneration was tried for several cycles with a view to recover the adsorbed metal ions and also to restore the sorbent to its original state. The adsorbent efficiency toward Hg(II) removal was tested using synthetic and chloralkali industry wastewaters. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1261–1269, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.