Abstract

A simple and practical method for preparing phosphor glass is proposed. Phosphor distribution and element analysis are investigated by optical microscope and field emission scanning electron microscope (FE-SEM). The phosphor particles dispersed in the matrix are vividly observed, and their distributions are uniform. Spectrum distribution and color coordinates dependent on the thickness of the screen-printed phosphor layer coupled with a blue light emitting diode (LED) chip are studied. The luminous efficacy of the 75 μm printed phosphor-layer phosphor glass packaged white LED is 81.24 lm/W at 350 mA. This study opens up many possibilities for applications using the phosphor glass on a selected chip in which emission is well absorbed by all phosphors. The screen-printing technique also offers possibilities for the design and engineering of complex phosphor layers on glass substrates. Phosphor screen-printing technology allows the realization of high stability and thermal conductivity for the phosphor layer. This phosphor glass method provides many possibilities for LED packing, including thin-film flip chip and remote phosphor technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.