Abstract
Pelvic organ prolapse (POP) is a serious health issue that affects many adult women. Surgical treatments for POP patients comprise a common strategy in which scaffold materials are used to reconstruct the prolapsed pelvic. However, the existing materials for pelvic reconstruction cannot meet clinical requirements in terms of biocompatibility, mechanics and immunological rejection. To address these concerns, polypropylene (PP) mesh was selected because of its strong mechanical properties. Small intestinal submucosa (SIS) was used to modify the PP mesh via a mussel-inspired polydopamine coating to enhance its biocompatibility. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) results demonstrated that SIS was successfully conjugated on the surface of the PP mesh. Moreover, the cytotoxicity results indicated that the PP mesh and SIS-modified PP mesh were safe to use. Furthermore, in vivo tests demonstrated that the fibroplasia around the implanted site in the SIS-modified PP mesh group was significantly less than the fibroplasia around the PP mesh group. In addition, the immunohistochemistry staining results indicated that the expression of pro-inflammatory macrophages (M1) was substantially lower and that the expression of pro-healing macrophages (M2) was higher in the SIS-modified PP mesh group. Furthermore, ELISA detection indicated that the expression of IL-1β and IL-6 in the SIS-modified PP mesh group was reduced compared with the PP mesh group. These findings suggest that a SIS-modified polypropylene hybrid mesh via a mussel-inspired polydopamine coating is a promising approach in pelvic reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.