Abstract

Preparation of ultrathin metal-organic framework (MOF) nanosheets is an effective way to improve the catalytic efficiency of MOF photocatalysts owing to their superiority in reducing the recombination rate of photogenerated electrons and holes and enhancing charge transfer. Herein, a light-sensitive two-dimensional uranyl-organic framework named HNU-68 was synthesized. Due to its interlayer stacking structure, the corresponding ultrathin nanosheets with a thickness of 4.4 nm (HNU-68-N) can be obtained through ultrasonic exfoliation. HNU-68-N exhibited an enhanced ability to selectively oxidize toluene to benzaldehyde, with the value of turnover frequency being approximately three times higher than that of the bulk HNU-68. This enhancement is attributed to the smaller size and interface resistance of the layered HNU-68-N nanosheets, which facilitate more thorough substrate contact and faster charge transfer, leading to an improvement in the photocatalytic efficiency. This work provides a potential candidate for the application of ultrathin uranyl-based nanosheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.