Abstract

Here a sealing-style x-ray photoelectron spectroscopy study of the surface of a 1.0 wt. %Ni/TiO2 nanoparticle catalyst in a flowing mixture of CO and O2 at 1bar was performed with a graphene membrane-sealed Si3N4 window-based miniature cell. We report the details on how a commercial Si3N4 window is modified before assembling a graphene membrane, how single-layer graphene membranes are transferred from their metal supports to the modified Si3N4 window, how a modified Si3N4 window covered with a double-layer graphene membrane is assembled onto a blank cell cap, how a nanoparticle catalyst is introduced to the cell cap and then the cell cap is installed onto a cell body to form a complete reaction cell, and how a complete cell is interfaced with a high vacuum chamber of an XPS system before an XPS study of 1.0 wt. %Ni/TiO2 catalyst surface in a flowing mixture for 0.2bar CO and 0.8bar O2 is performed. How the characterization of a catalyst using this type of graphene membrane-sealed Si3N4 window-based miniature cell is relevant to the finding of the actual surface chemistry of a catalyst during catalysis is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call