Abstract

Hydrotalcite/bismuth solid solution (2D/2D CoAl-LDH/BiO(OH)XI1−X) heterojunction photocatalysts were fabricated through a hydrothermal route. Because of their identical layered structure and interlayer hydroxides, CoAl-LDH(2D) and BiO(OH)XI1−X(2D) form a tightly bonded heterojunction, resulting in efficient light absorption, excitation, and carrier migration conversion. At the same time, the large specific surface area and abundant hydroxyl groups of the layered structure make the heterojunction catalyst exhibit excellent performance in the photocatalytic degradation of organic pollutants. Under visible light irradiation and in the presence of 1 g/L of the catalyst, 10 mg/L of methyl orange (MO) in water could be completely degraded within 20 min, and the degradation rate of tetracycline (TC) reached 99.23% within 5 min. CoAl-LDH/BiO(OH)XI1−X still maintained good photocatalytic degradation activity of tetracycline after five cycles, and the structure of the catalyst did not change. The reaction mechanism related to the degradation of TC by photocatalytic reactions was explored in detail, and the photoexcitation of the semiconductor heterojunction, as well as the subsequent free radical reaction process and the degradation pathway of TC were clarified. This work provides a promising strategy for the preparation of efficient photocatalytic materials and the development of water purification technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.