Abstract

In this study, we successfully fabricated Fe61Zr10Co5Mo7W2B15 and Ni61Nb19.2Ta19.8 amorphous fibers (AFs) using the melt-extraction method. This method ensured a rapid cooling, uniform quality, minimal defects, and superior performance. Magnetic property analysis revealed that the Fe-based AFs exhibited a single-slope magnetization curve characteristic of paramagnetic or diamagnetic materials, while the Ni-based AFs displayed a rectangular curve with low magnetic hysteresis, typical of ferromagnetic materials. The axial saturation magnetization of as-prepared Ni-based AFs is ~1.5 × 10-7 emu/g, with a coercivity of about 85 Oe. The statistical analysis of tensile tests indicated that Ni-based AFs possess a higher fracture threshold of 2440 ± 199 MPa and a reliability of 14.7, demonstrating greater material safety and suitability for high-performance applications. As opposed to Ni-based AFs, Fe-based AFs present a fracture threshold and of 1582 ± 692 MPa and a reliability 4.2. Moreover, under cyclic loading conditions, Ni-based AFs exhibited less residual deformation and superior elastic recovery with a fracture strength of 2800 MPa. These findings highlight the potential of Ni-based AFs for advanced engineering applications, particularly where high strength, durability, and excellent magnetic properties are required, paving the way for their integration into next-generation technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.