Abstract

The purpose of the current research is to formulate a smart drug delivery system for solubility enhancement and sustained release of hydrophobic drugs. Drug solubility-related challenges constitute a significant concern for formulation scientists. To address this issue, a recent study focused on developing PEG-g-poly(MAA) copolymeric nanogels to enhance the solubility of olmesartan, a poorly soluble drug. The researchers employed a free radical polymerization technique to formulate these nanogels. Nine formulations were formulated. The newly formulated nanogels underwent comprehensive tests, including physicochemical assessments, dissolution studies, solubility evaluations, toxicity investigations, and stability examinations. Fourier transform infrared (FTIR) investigations confirmed the successful encapsulation of olmesartan within the nanogels, while thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies verified their thermal stability. Scanning electron microscopy (SEM) images revealed the presence of pores on the surface of the nanogels, facilitating water penetration and promoting rapid drug release. Moreover, powder X-ray diffraction (PXRD) studies indicated that the prepared nanogels exhibited an amorphous structure. The nanogel carrier system led to a significant enhancement in olmesartan's solubility, achieving a remarkable 12.3-fold increase at pH 1.2 and 13.29-fold rise in phosphate buffer of pH 6.8 (NGP3). Significant swelling was observed at pH 6.8 compared to pH 1.2. Moreover, the formulated nexus is nontoxic and biocompatible and depicts considerable potential for delivery of drugs and protein as well as heat-sensitive active moieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call