Abstract

Absract This work aims to study experimentally the rheology and viscosity of nanofluids based on ethylene glycol, water, and isopropyl alcohol containing single-walled carbon particles (SWCNT). The weight concentration of SWCNTs varied from 0.05 to 1%, the temperature varied within the range from 10 to 50 °C. Sodium dodecylbenzene sulfonate, polyvinylpyrrolidone, and sodium dodecyl sulfate were used as dispersants. All the studied nanofluids were characterized by non-Newtonian rheology, if only the concentration of SWCNTs was not too low. The nanofluids were either pseudoplastic or viscoplastic fluids. With the increasing concentration of SWCNTs, the fluid index decreased, while the consistency factor increased. Moreover, as the CNT concentration increased, pseudoplastic fluids could become viscoplastic. In the general case, the rheology of nanofluids also changed with increasing temperature. An important fact is that the viscosity of the studied nanofluids depends actually on the effective size of the SWCNTs. The greater their effective size, the greater the viscosity. Indirectly, the answer to the question about the reason for this behavior is given by studying the microrheology of these nanofluids. They demonstrate viscoelastic properties of the nanofluids. This behavior is associated with the formation of a solid spatial lattice of nanotubes in the bulk of nanofluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.