Abstract

Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.). Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects. In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay. The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells. It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call