Abstract

5-Fluorouracil is a heterocyclic aromatic organic compound, and it is commonly used as a chemotherapeutic agent in many cancers. The present goal is to analyze and characterize the physicochemical and biological properties of a new therapeutic formulation of 5-FUD-Gal under simulated chronic wound and oxidative stress conditions. After synthesis of a new 5-fluorouracil derivative, preparation and characterization of the formulation were carried out. The antiangiogenic effect, wound healing, and oxidative stress responses were conducted with a HET-CAM assay and in vitro cell culture technique. The results initially demonstrated that 5-FUD-Gal synthesized by a series of reactions and the SLN formulation were prepared successfully. A strong cell protective effect above 98% cell viability was detected at 20 μM at 48 h. The wound closure of the HaCaT scratch assay was calculated to be 90.12 and 98.98% at 10 and 20 μM concentrations, respectively, at 48 h. Moreover, the strongest effect of 5-FUD-Gal-F was observed at 20 μM concentration on chicken embryos. This study provides novel insights that a new derivative of semisynthetic 5-FUD-Gal-F can be further evaluated as a therapeutic chemical compound in cancer disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call