Abstract

Ti–Zr–Ni icosahedral quasicrystal powders (Ti-QC), prepared by mechanical alloying and then annealing in a vacuum furnace, were used as a novel filler material in polyamide 12 (PA12). The melt processability of the composite was studied using a Haake torque rheometer. This indicates that PA12/Ti-QC composites can be melt-processed into a wear-resistant material. Further, these composites, fabricated by compression molding, were tested in sliding wear against a polished bearing steel counterface. The results from wear testing show that the addition of Ti-QC filler to PA12 enhances wear resistance and reduces volume loss by half compared with neat PA12. Furthermore, it is found that the hardness of the composite increases with increasing content of Ti-QC filler. In addition, PA12/Ti-QC composites exhibit a slightly higher crystallization temperature and better thermal stability than PA12. These combined results demonstrate that Ti-QC filler may be a desirable alternative when attempting to increase the wear resistance of PA12.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.