Abstract

In this paper, a novel superabsorbent composite material based on acrylic acid (AA), acrylic amide (AM) and inorganic kaolin was synthesized via solution polymerization in aqueous medium with N,N’-methylene bisacrylamide (MBA) as crosslinker and potassium persulfate (KPS) as initiator. The effects of water absorbency of the composite variables, such as neutralization, kaolin concentration and MBA concentration, on the water absorbency were systematically optimized. Evidence of compositing was obtained by a comparison of the Fourier transform infrared spectra of the initial reactants with that of the superabsorbent composites, and its complex structure was confirmed with scanning electron microscope. The water absorbing mechanism was also discussed. The results indicated that the superabsorbent composite material was successfully synthesized and the optimum reaction conditions were as follows: the neutralization degree was 80%, the dosage of kaolin, crosslinker and initiator were 4%, 0.11%, and 0.9% respectively and the mass ratio of AA and AM was 3∶2. The optimum absorbency of the superabsorbent composite material in distilled water could reach 815.6g/g.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call