Abstract

In the present study, chemical vapour deposition (CVD) was applied to dope boron into TiO 2 nanotubes anodized Ti in C 2H 2O 4·2H 2O + NH 4F electrolyte with the goal of improving the photocatalytic (PC) activity under visible light. The undoped TiO 2 nanotubes had a highly self-organized structure. However, after doping through CVD, TiO 2 nanotubes suffered from an observable disintegration of morphological integrity. X-ray diffraction (XRD) results confirmed that annealing temperature had an influence on the phase structure and boron impurities could retard anatase–rutile phase transition. Diffuse reflectance absorption spectra (DRS) analysis indicated that B-doped samples displayed stronger absorption in both UV and visible range. B-doped TiO 2 nanotubes electrode annealed at 700 °C through CVD showed higher photoelectrocatalytic (PEC) efficiency in methyl orange (MO) degradation than that annealed at 400 °C and 550 °C. MO degradation was substantially enhanced with the increasing applied bias potential. Moreover, there was a synergetic effect between the electrochemical and photocatalytic processes, and the synergetic factor R reached 1.45. B-doped TiO 2 nanotubes electrode showed good stability after 10 times by repeating photoelectrocatalysis of MO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.