Abstract

Cross-linked enzyme aggregates (CLEA ®) were prepared from laccases from three different sources: Trametes versicolor, Trametes villosa and Agaricus bisporus. The effect of the various parameters – nature of the precipitant, pH, temperature, glutaraldehyde concentration and cross-linking time – on the activity recovery and storage and operational stability of the resulting CLEAs was different. The laccase CLEAs exhibited the expected increased stability compared to the free enzyme but there was no direct correlation with the number of surface lysine residues in the latter. It is clearly not the only parameter influencing the properties of the CLEA. Co-aggregation with albumin did not improve the stability. The laccase CLEAs, in combination with the stable N-oxy radical, TEMPO, were shown to be active and stable catalysts for the aerobic oxidation of linear C 5–C 10 aliphatic alcohols, to the corresponding aldehydes, in aqueous buffer (pH 4). Rates were an order of magnitude higher than those observed with the corresponding free enzyme and the CLEAs could be recycled several times without appreciable loss of activity. The addition of water immiscible or water miscible solvents showed no further improvement in rate compared with reactions in aqueous buffer alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.