Abstract
Cross-linked enzyme aggregates (CLEAs) of α-galactosidase, partially purified from maize (Zea mays) flour, were prepared. The impact of various parameters on enzyme activity was examined to optimize the immobilization procedure. Biochemical characterization of the free and immobilized enzyme was carried out. Stability (thermal, pH, storage and operational stability) and reusability tests were performed. The potential use of the free enzyme and the CLEAs in hydrolysis processes of raffinose-type oligosaccharides present in soymilk was investigated. α-galactosidase CLEAs were prepared with 47% activity recovery under optimum conditions [1:5 (v/v) enzyme solution:saturated ammonium sulfate solution ratio; 7.5mg protein and 0.1% (v/v) glutaraldehyde, 6h, 4°C, 150 rpm]. α-galactosidase CLEAs exhibited increased stability in comparison to the free enzyme. The CLEAs and the free enzyme showed a maximum activity at 40°C and their optimal pH values were5.5 and 6.0, respectively. Kinetic constants (KM , Vmax and kcat ) were calculated for the free enzyme and the CLEAs in the presence of p-nitrophenyl-α-d-galactopyranoside, stachyose, melibiose and raffinose. The effect of various chemicals and sugars on enzyme activity showed that both enzyme forms were significantly inhibited by HgCl2 and galactose. The CLEAs hydrolyzed 85% of raffinose and 96% of stachyose. The α-galactosidase CLEAs, with their satisfactory enzymatic characteristics, have much potential for use in the food and feed industry. © 2019 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.