Abstract

Phase change materials can be incorporated with building materials to make kinds of composite material, which can be applied in building systems due to their excellent thermal energy storage properties. In this study, a novel form-stable composite PCM CA-LA/Diatomite was prepared using vacuum impregnation method by combining a eutectic mixture of capric-lauric acid (CA-LA) as phase change material (PCM) and diatomite as supporting material. The composite products were characterized by using XRD, FT-IR and SEM analyzing methods. The thermal properties of the composite were measured by Differential Scanning Calorimetry (DSC). The results showed that the composite material melted at 23.61 °C with a latent heat of 87.33 J/g and solidified at 22.50 °C with the latent heat of 86.93 J/g. TGA investigation revealed that the composite had excellent thermal durability above their working temperature ranges. The thermal cycling test showed the composite has a good thermal reliability after 200 thermal cycles. What's more, the expanded graphite was added into the composite in order to increase the heat transfer performance. The results showed that the thermal conductivity of the composite increased gradually by 39.7%, 61.6%, 77.6% and 114.2% for the EG fractions of 3%, 5%, 7%, and 10%, respectively. As a result, the CA-LA/Diatomite/EG composite material of has a potential to be applied in modern buildings and solar energy systems due to its excellent thermal properties, good chemical and thermal reliability and high thermal conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.