Abstract
We first report a composite of molybdenum disulfide (MoS2) nanoflake arrays (MNFs) and tungsten trioxide (WO3) nanorod arrays (WNRs) directly grown on a copper (Cu) substrate. This composite is characterized in detail by scanning and transmission electron microscopes (SEM/TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). All of the evidences indicate that the obtained composite is a heterojunction. The supercapacitive properties of MNFs-WNRs composite heterojunction are measured systematically by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The heterojunction exhibits a high specific capacitance of 522 F g−1 at 0.5 A g−1, a high capacitance retention (95%) after 5000 cycles and a low charge transfer resistance (1.0 Ω). And this kind of heterojunction has advantages of both MoS2 and WO3, which can be a better candidate for supercapacitive electrode material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.